Fibonacci Index and Stability Number of Graphs: a Polyhedral Study
نویسندگان
چکیده
The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Turán graphs frequently appear in extremal graph theory. We show that Turán graphs and a connected variant of them are also extremal for these particular problems. We also make a polyhedral study by establishing all the optimal linear inequalities for the stability number and the Fibonacci index, inside the classes of general and connected graphs of order n.
منابع مشابه
Turán Graphs, Stability Number, and Fibonacci Index
The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Turán graphs frequently appear in extremal graph theory. We show that Turán graphs and a conne...
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملHyers-Ulam stability of K-Fibonacci functional equation
Let denote by Fk,n the nth k-Fibonacci number where Fk,n = kFk,n−1+Fk,n−2 for n 2 with initial conditions Fk,0 = 0, Fk,1 = 1, we may derive a functionalequation f(k, x) = kf(k, x − 1) + f(k, x − 2). In this paper, we solve thisequation and prove its Hyere-Ulam stability in the class of functions f : N×R ! X,where X is a real Banach space.
متن کاملTricyclic graphs with maximum Merrifield-Simmons index
It is well known that the graph invariant, ‘the Merrifield–Simmons index’ is important one in structural chemistry. The connected acyclic graphs with maximal and minimal Merrifield–Simmons indices are determined by Prodinger and Tichy [H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, Fibonacci Quart. 20 (1982) 16–21]. The sharp upper and lower bounds for theMerrifield–Simmons indices of u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Optim.
دوره 18 شماره
صفحات -
تاریخ انتشار 2009